f - Linear Algebra f02wec

nag_real svd (f02wec)

1. Purpose

nag real svd (f02wec) returns all, or part, of the singular value decomposition of a general real
matrix.

2. Specification

#include <nag.h>
#include <nagf02.h>

void nag_real_svd(Integer m, Integer n, double a[l], Integer tda, Integer ncolb,
double b[], Integer tdb, Boolean wantq, double q[], Integer tdq,
double sv[], Boolean wantp, double pt[], Integer tdpt, Integer *iter,
double e[], Integer *failinfo, NagError *fail)

3. Description
The m by n matrix A is factorized as
A=QDPT
where
D= <'§> m>n
D=5, m=n
D=(50) m<n.

Q@ is an m by m orthogonal matrix, P is an n by n orthogonal matrix and S is a min(m,n) by
min(m,n) diagonal matrix with non-negative diagonal elements, sv;, vy, ..., sv ordered
such that

min(m,n)>

> 0.

Uy > SVqy 2.2 S’Umin('m,n) =

The first min(m,n) columns of @ are the left-hand singular vectors of A, the diagonal elements of
S are the singular values of A and the first min(m,n) columns of P are the right-hand singular
vectors of A.

Either or both of the left-hand and right-hand singular vectors of A may be requested and the
matrix C' given by

C=Q"B
where B is an m by ncolb given matrix, may also be requested.

The function obtains the singular value decomposition by first reducing A to upper triangular form
by means of Householder transformations, from the left when m > n and from the right when
m < n. The upper triangular form is then reduced to bidiagonal form by Givens plane rotations
and finally the QR algorithm is used to obtain the singular value decomposition of the bidiagonal
form.

Good background descriptions to the singular value decomposition are given in Dongarra et
al(1979), Hammarling (1985) and Wilkinson (1978). Note that this function is not based on the
LINPACK routine SSVDC.

Note that if K is any orthogonal diagonal matrix such that

KK7T =1, (so that K has elements + 1 or — 1 on the diagonal)
then

A= (QK)D(PK)T

is also a singular value decomposition of A.

[NP3275/5/pdf] 3.f02wec. 1

nag_real _svd NAG C Library Manual

4. Parameters

m
Input: the number of rows, m, of the matrix A.
Constraint: m > 0.
When m = 0 then an immediate return is effected.

n
Input: the number of columns, n, of the matrix A.
Constraint: n > 0.
When n = 0 then an immediate return is effected.

a[m|[tda]
Input: the leading m by n part of the array a must contain the matrix A whose singular value
decomposition is required.
Output: if m > n and wantq = TRUE, then the leading m by n part of a will contain the
first n columns of the orthogonal matrix Q.
If m < n and wantp = TRUE, then the leading m by n part of a will contain the first m rows
of the orthogonal matrix PT.
If m > n and wantq = FALSE and wantp = TRUE, then the leading n by n part of a will
contain the first n rows of the orthogonal matrix P7.
Otherwise the contents of the leading m by n part of a are indeterminate.

tda
Input: the second dimension of the array a as declared in the function from which nag_real_svd
is called.
Constraint: tda > n.

ncolb
Input: ncolb, the number of columns of the matrix B. When ncolb = 0 the array b is not
referenced.
Constraint: ncolb > 0.

b[m][tdb]
Input: if ncolb > 0, the leading m by ncolb part of the array b must contain the matrix to
be transformed. If ncolb = 0 the array b is not referenced and may be set to the null pointer,
i.e., (double x)0.
Output: b is overwritten by the m by ncolb matrix Q7 B.

tdb
Input: the second dimension of the array b as declared in the function from which nag_real _svd
is called.
Constraint: if ncolb > 0 then tdb > ncolb.

wantq

Input: wantq must be TRUE, if the left-hand singular vectors are required. If
wantq = FALSE, then the array q is not referenced.

q[m][tdq]
Output: if m < n and wantq = TRUE, the leading m by m part of the array q will contain
the orthogonal matrix). Otherwise the array q is not referenced and may be set to the null
pointer, i.e., (double x)0.

tdq
Input: the second dimension of the array q as declared in the function from which nag_real_svd
is called.
Constraint: if m < n and wantq = TRUE, tdq > m.

sv[min(m,n)]
Output: the min(m,n) diagonal elements of the matrix S.
wantp

Input: wantp must be TRUE if the right-hand singular vectors are required. If
wantp = FALSE, then the array pt is not referenced.

3.f02wec.2 [NP3275/5/pdf]

f — Linear Algebra f02wec

pt[n][tdpt]
Output: if m > n and wantq and wantp are TRUE, the leading n by n part of the array pt
will contain the orthogonal matrix P7. Otherwise the array pt is not referenced and may be
set to the null pointer, i.e., (double x*)0.

tdpt
Input: the second dimension of the array pt as declared in the function from which
nag-real_svd is called.
Constraint: if m > n and wantq and wantp are TRUE, tdpt > n.

iter
Output: the total number of iterations taken by the QR algorithm.
e[min(m,n)-1]
Output: if the error NE.QR_NOT_CONYV occurs the array e contains the super diagonal

elements of matrix F in the factorisation of A according to A = QEP”. See Section 5 for
further details.

failinfo
Output: if the error NE_.QR_NOT_CONV occurs failinfo contains the number of singular
values which may not have been found correctly. See Section 5 for details.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

Error Indications and Warnings

NE_INT_ARG_LT
On entry, m must not be less than 0: m = (value).
On entry, n must not be less than 0: n = (value).
On entry, ncolb must not be less than 0: ncolb = (value).

NE_2 INT_ARG_LT
On entry, tda = (value) while n = (value). These parameters must satisfy tda > n.
On entry, tdb = (value) while ncolb = (value). These parameters must satisfy tdb > ncolb.

NE_TDQ.LT M
On entry, tdq = (value) while m = (value). When wantq is TRUE and m < n then relationship
tdq > m must be satisfied.

NE_TDP LT N
On entry, tdpt = (value) while n = (value). When wantq and wantp are TRUE and m > n
then relationship tdpt > n must be satisfied.

NE_QR_NOT_CONV
The QR algorithm has failed to converge in (value) iterations. Singular values 1,2.. .. failinfo
may not have been found correctly and the remaining singular values may not be the smallest.
The matrix A will nevertheless have been factorized as A = QEPT, where the leading
min(m, n) by min(m,n) part of E is a bidiagonal matrix with sv[0], sv[1], ..., sv[min(m,n—1)]
as the diagonal elements and e[0], e[1], ..., e[min(m,n—2)] as the superdiagonal elements.
This failure is not likely to occur.

NE_ALLOC_FAIL
Memory allocation failed.

Further Comments
Accuracy

The computed factors (), D and P satisfy the relation
QDPT = A+ FE

where ||E|| < cel|A||, € being the machine precision, ¢ is a modest function of m and n and ||.||
denotes the spectral (two) norm. Note that ||A|| = sv;.

[NP3275/5/pdf] 3.f02wec.3

nag_real _svd NAG C Library Manual

6.2.

8.1.

References

Dongarra J J, Moler C B, Bunch J R and Stewart G W (1979) LINPACK Users’ Guide SIAM,
Philadelphia.

Hammarling S (1985) The Singular Value Decomposition in Multivariate Statistics ACM Signum
Newsletter 20 (3) 2-25.

Wilkinson J H (1978) Singular-value Decomposition — Basic Aspects Numerical Software — Needs
and Awailability D A H Jacobs (ed) Academic Press, London.

See Also

None.

Example

For this function two examples are presented, in Sections 8.1 and 8.2. In the example programs
distributed to sites, there is a single example program for nag_real_svd, with a main function:

/* nag_real_svd(fO2wec) Example Program

*

* Copyright 1990 Numerical Algorithms Group.
*

* Mark 1, 1990.

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagf02.h>

#define EX1_MMAX 20
#define EX1_NMAX 10

#define EX2_MMAX 10
#define EX2_NMAX 20

static void ex1(), ex2();

main()

{

Vprintf ("f02wec Example Program Results\n");
Vscanf (" %*["\n]"); /* Skip heading in data file */
ex1();
ex2();
exit (EXIT_SUCCESS) ;

}

The code to solve the two example problems is given in the functions ex1 and ex2, in Sections 8.1.1
and 8.2.1 respectively.

Example 1

To find the singular value decomposition of the 5 by 3 matrix

2.0 2.5 2.5
2.0 2.5 2.5
A=1]116 —-04 2.8
2.0 -0.5 0.5
1.2 -03 -29

together with the vector Qb for the vector

1.1

0.9

b= 0.6
0.0

-0.8

3.f02wec. 4 [NP3275/5/pdf]

f — Linear Algebra

8.1.1. Program Text

static void ex1()

{
Integer tda = EX1_NMAX;
Integer tdpt = EX1_NMAX;

double a[EX1_MMAX] [EX1_NMAX], b[EX1_MMAX], e[EX1_NMAX-1];
double pt[EX1_NMAX] [EX1_NMAX], sv[EX1_NMAX], dummy[1];
Integer i, j, m, n, iter, failinfo;

Boolean wantp, wantq;

static NagError fail;

Vprintf ("Example 1\n");
Vscanf (" %*["\n]"); /* Skip Example 1 heading */
Vscanf (" %*["\nl");

Vscanf ("%1d%1d", &m, &n);
if (m > EX1_MMAX || n > EX1_NMAX)
{
Vprintf("m or n is out of range.\n");
Vprintf("m = %21d, n = %21d\n", m, n);

else
{
Vscanf (" %*x["\nl]");
for (i = 0; i < m; ++i)
for (j = 0; j < m; ++j)
Vscanf ("%1f", &alil[j1);
Vscanf (" %*["\nl");
for (i = 0; i < m; ++i)
Vscanf ("%1f", &b[i]);

/* Find the SVD of A. */
wantq = TRUE;

wantp = TRUE;

fail.print = TRUE;

fO2wec(m, n, (double *)a, tda, (Integer)l, b, (Integer)l, wantq,
dummy, (Integer)l, sv, wantp, (double *)pt, tdpt, &iter,

e, &failinfo, &fail);
if (fail.code != NE_NOERROR) exit(EXIT_FAILURE);

Vprintf ("Singular value decomposition of A\n\n");
Vprintf ("Singular values\n");
for (i = 0; 1 < n; ++1i)
Vprintf (" %8.4f", sv[il);
Vprintf ("\n\n");
Vprintf ("Left-hand singular vectors, by column\n");
for (i = 0; 1 < m; ++1i)
{
for (j = 0; j < mn; ++j)
Vprintf (" %8.4f", ali]l[j1);
Vprintf ("\n");

Vprintf ("\n");
Vprintf ("Right-hand singular vectors, by column\n");
for (i = 0; 1 < n; ++1i)
{
for (j = 0; j < m; ++j)
Vprintf (" %8.4f", pt[j1[il);
Vprintf ("\n");

Vprintf ("\n");

Vprintf ("Vector Q’*B\n");

for (i = 0; 1 < m; ++1i)
Vprintf (" %8.4f", bl[il);

Vprintf ("\n\n");

[NP3275/5/pdf]

f02wec

3.f02wec.5

nag_real _svd

8.1.2.

8.1.3.

Program Data

f02wec Example Program Data

Example 1

Values of m and n
5 3

Matrix A
2.0 2.5 2.5
2.0 2.5 2.5
1.6 -0.4 2.8
2.0 -0.5 0.5
1.2 -0.3 -2.9

Vector B

1.1 0.9 0.

(&)

0.0 -0.8

Program Results

f02wec Example Program Results
Example 1
Singular value decomposition of A

Singular values

6.5616 3.0000 2.4384
Left-hand singular vectors, by column
0.6011 -0.1961 -0.3165
0.6011 -0.1961 -0.3165
0.4166 0.1569 0.6941
0.1688 -0.3922 0.5636
-0.2742 -0.8629 0.0139
Right-hand singular vectors, by column
0.4694 -0.7845 0.4054
0.4324 -0.1961 -0.8801
0.7699 0.5883 0.2471
Vector Q’*B
1.6716 0.3922 -0.2276 -0.1000 -0.1000
8.2. Example 2
To find the singular value decomposition of the 3 by 5 matrix
2.0 2.0 1.6 2.0 1.2
A=125 25 —-04 -05 -0.3
25 25 -—-28 0.5 -2.9
8.2.1. Program Text
static void ex2()
{
Integer tda = EX2_NMAX;
Integer tdq = EX2_MMAX;
double al[EX2_MMAX] [EX2_NMAX], e[EX2_NMAX-1];
double q[EX2_MMAX] [EX2_MMAX], sv[EX2_MMAX], dummy[1];
Integer i, j, m, n, iter, ncolb, failinfo;
Boolean wantp, wantq;
static NagError fail;
Vprintf ("\nExample 2\n");
Vscanf (" %*["\n]"); /* Skip Example 2 heading */
Vscanf (" %*["\nl");
Vscanf ("%1d%1d", &m, &n);
if (m > EX2_MMAX || n > EX2_NMAX)
{
3.f02wec.6

NAG C Library Manual

[NP3275/5/pdf]

f — Linear Algebra

Vprintf("m or n is out of range.\n");
Vprintf("m = %21d, n = %21d\n", m, n);

else
{
Vscanf (" %*["\nl");
for (i = 0; i < m; ++1i)
for (j = 0; j < n; ++j)
Vscanf ("%1f", &alil [j1);

/* Find the SVD of A. x*/

wantq = TRUE;
wantp = TRUE;
ncolb = 0;

fail.print = TRUE;

fO02wec(m, n, (double *)a, tda, ncolb, dummy, (Integer)l, wantq,
(double *)q, tdq, sv, wantp, dummy, (Integer)l, &iter,

e, &failinfo, &fail);
if (fail.code !'= NE_NOERROR) exit(EXIT_FAILURE);

Vprintf ("Singular value decomposition of A\n\n\n");
Vprintf ("Singular values\n\n");
for (i = 0; i < m; ++i)
Vprintf (" %8.4f", sv[il);
Vprintf ("\n\n") ;
Vprintf ("Left-hand singular vectors, by column\n\n");
for (i = 0; i < m; ++i)
{
for (j = 0; j < m; ++j)
Vprintf (" %8.4f", ql[il[j1);
Vprintf ("\n");

Vprintf ("Right-hand singular vectors, by column\n\n");
for (i = 0; i < n; ++1i)
{
for (j = 0; j < m; ++j)
Vprintf (" %8.4f", aljl[il);
Vprintf ("\n");

3

8.2.2. Program Data

Example 2
Values of m and n
3 5

Matrix A
2.0 2.0 1.6 2
2.5 2.5 -0.4 -0.
2.5 2.5 2.8 0

8.2.3. Program Results

Example 2
Singular value decomposition of A
Singular values
6.5616 3.0000 2.4384
Left-hand singular vectors, by column
-0.4694 0.7845 -0.4054

-0.4324 0.1961 0.8801
-0.7699 -0.5883 -0.2471

[NP3275/5/pdf]

f02wec

3.f02wec.7

nag_real _svd NAG C Library Manual

Right-hand singular vectors, by column

-0.6011 0.1961 0.3165
-0.6011 0.1961 0.3165
-0.4166 -0.1569 -0.6941
-0.1688 0.3922 -0.5636

0.2742 0.8629 -0.0139

3.f02wec.8 [NP3275/5/pdf]

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

